Conceptual Algorithmic Template for Deterministic Dynamic Programming

Suppose we have T stages and S states. We set up two-level data structures f and x such that

- $f[t][s]$ holds the value of being in state s and time stage t (should be able to accept values of t up to $T+1$)
- $x[t][s]$ holds the best decision to take in state s and time stage t

The optimization procedure may then be organized along the following general lines

1. **Set up or read in problem data**
2. **Set up data structures for x and f**

 For each state s, set $f[T+1][s]$ to be the value of being in state s at the end of planning horizon. Depending on the problem and s, this value might be
 - Zero
 - Infinity for disallowed ending states ($+\infty$ for minimization, $-\infty$ for maximization)
 - Some “salvage” value (for example, what you could get by selling off excess inventory to a discounter at the end of the time horizon)

3. **Loop over stages $t = T, T-1, \ldots, 1$ (backward!)**

 Loop over all possible states s

 Set the current state value to be $+\infty$ for minimization, $-\infty$ for maximization

 Determine which decision moves are possible from stage t, state s

 Loop over all decisions d that are possible from this state

 Evaluate the value of each move d using the dynamic programing recursion formula

 If the decision d improves on the best seen, record its value and the decision d

 Store the best decision for stage t, state s in $x[t][s]$

 Store the corresponding optimal value in $f[t][s]$

4. **When done**, the optimal solution value is in $f[1][i]$, where i is the initial state

To output the optimal sequence of decisions, start by setting i to the initial state, then snake forward through the optimal sequence of states as follows:

5. **Loop over stages $t = 1, 2, \ldots, T$ (forward, this time)**

 Output the optimal decision $x[t][i]$

 Overwrite i with the optimal state at time $t + 1$, computed from i and $x[t][i]$