Special Topics in Operations Research 16:711:611
 Convex Analysis and Optimization
 Spring 2009 Rutgers University Prof. Eckstein

Homework 1

Due Wednesday, January 28

1. Scaling convex sets. Exercise 1.1 on page 70 of the text (mainly, to prove Proposition 1.2.1(c) in the text).
2. Affine functions. Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (not taking $\pm \infty$ values) always obeys the convex function relation at equality, that is,

$$
\begin{equation*}
f(\alpha x+(1-\alpha) y)=\alpha f(x)+(1-\alpha) f(y) \quad \forall x, y \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

Show that f must be of the form $f(x)=\langle a, x\rangle+b$ for $a \in \mathbb{R}^{n}, b \in \mathbb{R}$ (that is, f is an inner product with some fixed vector, plus a constant). Conversely, also show that any function of this form has the property (1).
3. Convex hulls. Show that for any set $X \subseteq \mathbb{R}^{n}$, the convex hull $\operatorname{conv}(X)$ of X (the intersection of all convex sets containing X) is equal to the set of all convex combinations of points in X.
4. Affine sets and hulls. Note: some of the scalars α_{i} in this problem may be negative.
(a) The textbook defines a set $X \subseteq \mathbb{R}^{n}$ as being affine if it is of the form $S+x=$ $\{x+s \mid s \in S\}$ for some $x \in \mathbb{R}^{n}$ and linear subspace S of \mathbb{R}^{n}. Show that X is affine according to this definition if and only if X has the property

$$
\left.\begin{array}{l}
x^{1}, \ldots, x^{m} \in X \\
\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R} \\
\sum_{i=1}^{m} \alpha_{i}=1
\end{array}\right\} \quad \Rightarrow \quad \sum_{i=1}^{m} \alpha_{i} x^{i} \in X
$$

(b) In the text, the affine hull aff (Y) of a set Y is defined to be the intersection of all affine sets containing Y. Show that

$$
\operatorname{aff} Y=\left\{\sum_{i=1}^{m} \alpha_{i} y^{i} \mid m>0, y^{1}, \ldots, y^{m} \in Y, \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}, \sum_{i=1}^{m} \alpha_{i}=1\right\}
$$

that is, $\operatorname{aff}(Y)$ is the set of all affine combinations of points from Y.
5. Calculus/analysis applications: arithmetic/geometric means. Exercise 1.11 on page 73 of the text.

