Special Topics in Operations Research 16:711:611
 Convex Analysis and Optimization
 Spring 2009 Rutgers University Prof. Eckstein

Homework 2

Due Wednesday, February 11

1. Prove the following fact, used in the proof of Proposition 1.5.1(b) in the text: let $x, y \in \mathbb{R}^{n}$, and let $\left\{z^{k}\right\} \subset \mathbb{R}^{n}$ be a sequence with $\left\|z^{k}\right\| \rightarrow \infty$; then

$$
\lim _{k \rightarrow \infty} \frac{\left\|z^{k}-x\right\|}{\left\|z^{k}-y\right\|}=1
$$

Hints: consider the square of the ratio above, instead of the ratio. Expand the numerator and denominator and use the Cauchy-Schwarz inequalities $-\|z\|\|w\| \leq\langle z, w\rangle \leq$ $\|z\|\|w\|$. Finally, you may use without proof the following standard calculus fact about limits of ratios of polynomials: given $a_{1}, \ldots, a_{m}, b_{1} \ldots, b_{m} \in \mathbb{R}$ with $a_{m}, b_{m} \neq 0$, one has

$$
\lim _{t \rightarrow \infty} \frac{\sum_{i=1}^{m} a_{i} t^{i}}{\sum_{i=1}^{m} b_{i} t^{i}}=\frac{a_{m}}{b_{m}}
$$

2. Suppose that $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$ is a convex function and $x \in \operatorname{dom} f$. Show that for any $d \in \mathbb{R}^{n}$ the function $g_{d}:(0, \infty) \rightarrow(-\infty,+\infty]$ defined by

$$
g_{d}(\alpha)=\frac{f(x+\alpha d)-f(x)}{\alpha}
$$

is nondecreasing.
3. Nonconvex Projections (similar to exercise 2.11 in the text): Let $C \subset \mathbb{R}^{n}$ be a closed but possibly nonconvex set, and consider any point $x \in \mathbb{R}^{n}$.
(a) Show that the function $g(w)=\|w-x\|$ must have a nonempty, compact set of minima over C. Denote this set by $P_{C}(x)$.
(b) Show that $d_{C}(x)=\inf _{w \in C}\|w-x\|$ is an everywhere finite-valued and continuous function of $x \in \mathbb{R}^{n}$.
(c) Give an example showing that if C is not convex, d_{C} need not be convex.
4. Given a set $X \subseteq \mathbb{R}^{n}$, its indicator function is the function $\delta_{X}: \mathbb{R}^{n} \rightarrow(\infty,+\infty]$ given by

$$
\delta_{X}(x)= \begin{cases}0, & \text { if } x \in X \\ +\infty, & \text { if } x \notin X\end{cases}
$$

(a) Show that if X is a closed set, δ_{X} is a closed function.
(b) Show that if X is a convex set, δ_{X} is a convex function.
5. Take any closed proper function $f: \mathbb{R}^{n} \rightarrow(\infty,+\infty]$ and scalar $\lambda>0$. Then the Moreau regularization or Moreau envelope of f is the function $\hat{f}_{\lambda}: \mathbb{R}^{n}$ given by

$$
\hat{f}_{\lambda}(x)=\inf _{w \in \mathbb{R}^{n}}\left\{f(w)+\frac{1}{2 \lambda}\|w-x\|^{2}\right\} .
$$

(a) Show that $\hat{f}_{\lambda}(x) \leq f(x)$ for all $x \in \mathbb{R}^{n}$.
(b) Show that if x^{*} is a global minimizer of f, then $\hat{f}_{\lambda}\left(x^{*}\right)=f\left(x^{*}\right)$.
(c) Show that the properness of f implies that \hat{f}_{λ} can never take the value $+\infty$. Further, show that if f is convex, \hat{f}_{λ} cannot take the value $-\infty$.
(d) Consider any closed set C. Show that for any $\lambda>0$, we have

$$
d_{C}(x)=\sqrt{2 \lambda\left(\widehat{\delta_{C}}\right)_{\lambda}(x)}
$$

where d_{C} is the distance function defined in problem 3 and δ_{C} is the indicator function of C, as defined in problem 4.

