Special Topics in Operations Research 16:711:611
 Convex Analysis and Optimization
 Spring 2009 Rutgers University Prof. Eckstein

Homework 3

Due Wednesday, February 25

1. Problems 3.4(a)-(c) on page 212 of the textbook.
2. Cone separation. Suppose $K \subset \mathbb{R}^{n}$ is a nonempty closed convex cone. Show that if $z \in \mathbb{R}^{n}$ and $z \notin K$, then there exists $a \in K^{*}$ with $\langle a, z\rangle>0$.
3. Show that if $C_{1}, C_{2} \subseteq \mathbb{R}^{m}$ are closed convex cones, then $\left(C_{1} \cap C_{2}\right)^{*}=\operatorname{cl}\left(C_{1}^{*}+C_{2}^{*}\right)$ (note: this is the main result of problem 3.4(d) in the textbook).
4. Let A be an $m \times n$ real matrix, and $C \subseteq \mathbb{R}^{m}$ be a closed convex cone. Define

$$
K=\left\{x \in \mathbb{R}^{n} \mid A x \in C\right\} \quad P=\left\{A^{\top} y \mid y \in C^{*}\right\}
$$

(a) Show that K is a closed convex cone.
(b) Show that $K^{*}=\mathrm{cl} P$.
(c) Show that $P^{*}=K$.
5. A cone K is called self-dual if $K^{*}=-K$. Show that the following cones are self-dual:
(a) The nonnegative orthant $\left\{x \in \mathbb{R}^{n} \mid x \geq 0\right\}$
(b) The Lorentz cone (also called the "ice cream cone") in \mathbb{R}^{n+1}, defined as follows:

$$
K=\left\{(x, w) \in \mathbb{R}^{n} \times \mathbb{R} \mid w \geq\|x\|\right\}
$$

