Special Topics in Operations Research 16:711:611 Convex Analysis and Optimization

Spring 2009 Rutgers University Prof. Eckstein

Homework 3

Due Wednesday, February 25

- 1. Problems 3.4(a)-(c) on page 212 of the textbook.
- 2. Cone separation. Suppose $K \subset \mathbb{R}^n$ is a nonempty closed convex cone. Show that if $z \in \mathbb{R}^n$ and $z \notin K$, then there exists $a \in K^*$ with $\langle a, z \rangle > 0$.
- 3. Show that if $C_1, C_2 \subseteq \mathbb{R}^m$ are closed convex cones, then $(C_1 \cap C_2)^* = \operatorname{cl}(C_1^* + C_2^*)$ (note: this is the main result of problem 3.4(d) in the textbook).
- 4. Let A be an $m \times n$ real matrix, and $C \subseteq \mathbb{R}^m$ be a closed convex cone. Define

$$K = \{ x \in \mathbb{R}^n \mid Ax \in C \} \qquad P = \{ A^{\mathsf{T}}y \mid y \in C^* \}.$$

- (a) Show that K is a closed convex cone.
- (b) Show that $K^* = \operatorname{cl} P$.
- (c) Show that $P^* = K$.
- 5. A cone K is called *self-dual* if $K^* = -K$. Show that the following cones are self-dual:
 - (a) The nonnegative orthant $\{x \in \mathbb{R}^n \mid x \ge 0\}$
 - (b) The Lorentz cone (also called the "ice cream cone") in \mathbb{R}^{n+1} , defined as follows:

$$K = \{ (x, w) \in \mathbb{R}^n \times \mathbb{R} \mid w \ge ||x|| \}.$$