Special Topics in Operations Research 16:711:611 Convex Analysis and Optimization

Spring 2009 Rutgers University Prof. Eckstein

Homework 4

1. Consider a proper convex function $f : \mathbb{R}^n \to (\infty, +\infty]$, and its subgradient mapping ∂f from \mathbb{R}^n to subsets of \mathbb{R}^n (sometimes denoted $2^{\mathbb{R}^n}$). That is,

 $\partial f: x \in \mathbb{R}^n \mapsto \left\{ d \in \mathbb{R}^n \ | \ f(y) \geq f(x) + \langle d, y - x \rangle \; \forall \, y \in \mathbb{R}^n \right\}.$

Show that the point-to-set mapping ∂f has the following property:

$$\begin{cases} y \in \partial f(x) \\ y' \in \partial f(x') \end{cases} \Rightarrow \langle x - x', y - y' \rangle \ge 0.$$

Note: point-to-set mappings with this property are called *monotone*.

2. (a) For a nonempty convex set C, define the point-to-set map

$$N_C(x) = \begin{cases} \{d \in \mathbb{R}^n \mid \langle d, y - x \rangle \le 0 \forall y \in C\}, & \text{if } x \in C\\ \emptyset, & \text{if } x \notin C. \end{cases}$$

Show that $N_C = \partial \delta_C$, where δ_C is the indicator function defined in homework assignment 2, that is,

$$\delta_C(x) = \begin{cases} 0, & \text{if } x \in C \\ +\infty, & \text{if } x \notin C. \end{cases}$$

- (b) Suppose that $f : \mathbb{R}^n \to (-\infty, +\infty]$ is a convex function, $x \in \mathbb{R}^n$, $w \in \partial f(x)$, and $d \in N_{\text{dom } f}(x)$, where the $N_{(\cdot)}$ operation is as defined in part (a). Show that we also have $w + d \in \partial f(x)$.
- (c) Let $f : \mathbb{R}^n \to (-\infty, +\infty]$ be a proper convex function, and let $x \in \mathbb{R}^n$ be a point such that $\partial f(x) \neq \emptyset$. Show that $\partial f(x)$ is compact if and only if $x \in \operatorname{int} \operatorname{dom} f$. (Hint: for the "if" part, adapt the proof given in class for real-valued convex functions.)
- (d) Show that if U is a linear subspace of \mathbb{R}^n , then $N_U(x) = U^{\perp}$ for all $x \in U$, where U^{\perp} denotes the subspace orthogonal to U (by definition, $N_U(x) = \emptyset$ if $x \notin U$).
- 3. Give an example of how, when ri dom $f_1 \cap$ ri dom $f_2 = \emptyset$, one may have

$$\partial (f_1 + f_2)(x) \supseteq \partial f_1(x) + \partial f_2(x)$$

for two closed proper convex functions $f_1, f_2 : \mathbb{R}^n \to (\infty, +\infty]$. That is, at some point $x \in \mathbb{R}^n$, there exist subgradients of $f_1 + f_2$ that cannot be expressed as the sum of a subgradient of f_1 at x and a subgradient of f_2 and x.

4. Using the same definition of the $N_{(\cdot)}$ operation as in problem 2(a), prove the following generalization of Proposition 4.7.2 in the textbook: let $f : \mathbb{R}^n \to (-\infty, +\infty]$ be a proper convex function, and $C \subseteq \mathbb{R}^n$ a nonempty convex set. If $\operatorname{ridom} f \cap \operatorname{ri} C \neq \emptyset$, then a point $x^* \in C$ minimizes f over C if and only if

$$0 \in \partial f(x^*) + N_C(x^*),$$

and this condition is equivalent to the existence of some $d \in \partial f(x^*)$ such that

$$\langle d, y - x \rangle \ge 0 \quad \forall y \in C.$$

- 5. In this problem, we will prove the following "almost industrial strength" generalization of Proposition 4.2.5(a): let $f : \mathbb{R}^m \to (-\infty, +\infty]$ be a proper convex function and let A be an $m \times n$ matrix. Define g(x) = f(Ax), which is also a convex function. Then $\partial g(x) \supseteq A^{\top} \partial f(Ax)$ for all $x \in \mathbb{R}^n$. Suppose further that ridom $f \cap \text{im } A \neq \emptyset$, that is, there exists some point in $z \in \text{ridom } f$ that may be expressed as z = Ax for some $x \in \mathbb{R}^n$. Then, for any $x \in \mathbb{R}^n$, we have $\partial g(x) = A^{\top} \partial f(Ax)$.
 - (a) Show (without assuming ridom $f \cap \operatorname{im} A \neq \emptyset$) that $\partial g(x) \supseteq A^{\mathsf{T}} \partial f(Ax)$.
 - (b) Define $U = \{(x, z) \in \mathbb{R}^n \times \mathbb{R}^m \mid z = Ax\}$, which is a linear subspace of $\mathbb{R}^n \times \mathbb{R}^m$, along with the following functions $\mathbb{R}^n \times \mathbb{R}^m \to (-\infty, +\infty]$:

$$F_1(x,z) = f(z)$$

$$F_2(x,z) = \delta_U(x,z) = \begin{cases} 0, & z = Ax \\ +\infty, & z \neq Ax \end{cases}$$

$$F(x,z) = F_1(x,z) + F_2(x,z) = \begin{cases} f(z), & z = Ax \\ +\infty, & z \neq Ax \end{cases}$$

Show that these functions are convex and that $d \in \partial g(x)$ implies $(d, 0) \in \partial F(x, Ax)$.

- (c) Find expressions for $\partial F_1(x, z)$ and $\partial F_2(x, z)$.
- (d) For the remainder of this problem, assume $\operatorname{ridom} f \cap \operatorname{im} A \neq \emptyset$. Show that $\operatorname{ridom} F_1$ and $\operatorname{ridom} F_2$ must intersect.
- (e) Find an expression for $\partial F(x,z) = \partial (F_1 + F_2)(x,z)$. (Hint: you may use the Moreau-Rockafellar theorem proved in class.)
- (f) Combine the above results to show that $\partial g(x) = A^{\dagger} \partial f(Ax)$.