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Homework 4

1. Consider a proper convex function f : Rn → (∞,+∞], and its subgradient mapping
∂f from Rn to subsets of Rn (sometimes denoted 2Rn

). That is,

∂f : x ∈ Rn 7→ {d ∈ Rn | f(y) ≥ f(x) + 〈d, y − x〉 ∀ y ∈ Rn} .

Show that the point-to-set mapping ∂f has the following property:

y ∈ ∂f(x)
y′ ∈ ∂f(x′)

}
⇒ 〈x− x′, y − y′〉 ≥ 0.

Note: point-to-set mappings with this property are called monotone.

2. (a) For a nonempty convex set C, define the point-to-set map

NC(x) =

{
{d ∈ Rn | 〈d, y − x〉 ≤ 0 ∀ y ∈ C } , if x ∈ C
∅, if x 6∈ C.

Show that NC = ∂δC , where δC is the indicator function defined in homework
assignment 2, that is,

δC(x) =

{
0, if x ∈ C
+∞, if x 6∈ C.

(b) Suppose that f : Rn → (−∞,+∞] is a convex function, x ∈ Rn, w ∈ ∂f(x), and
d ∈ Ndom f (x), where the N(·) operation is as defined in part (a). Show that we
also have w + d ∈ ∂f(x).

(c) Let f : Rn → (−∞,+∞] be a proper convex function, and let x ∈ Rn be a point
such that ∂f(x) 6= ∅. Show that ∂f(x) is compact if and only if x ∈ int dom f .
(Hint: for the “if” part, adapt the proof given in class for real-valued convex
functions.)

(d) Show that if U is a linear subspace of Rn, then NU(x) = U⊥ for all x ∈ U , where
U⊥ denotes the subspace orthogonal to U (by definition, NU(x) = ∅ if x 6∈ U).

3. Give an example of how, when ri dom f1 ∩ ri dom f2 = ∅, one may have

∂(f1 + f2)(x) ! ∂f1(x) + ∂f2(x)

for two closed proper convex functions f1, f2 : Rn → (∞,+∞]. That is, at some point
x ∈ Rn, there exist subgradients of f1 + f2 that cannot be expressed as the sum of a
subgradient of f1 at x and a subgradient of f2 and x.
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4. Using the same definition of the N(·) operation as in problem 2(a), prove the following
generalization of Proposition 4.7.2 in the textbook: let f : Rn → (−∞,+∞] be a
proper convex function, and C ⊆ Rn a nonempty convex set. If ri dom f ∩ riC 6= ∅,
then a point x∗ ∈ C minimizes f over C if and only if

0 ∈ ∂f(x∗) +NC(x∗),

and this condition is equivalent to the existence of some d ∈ ∂f(x∗) such that

〈d, y − x〉 ≥ 0 ∀ y ∈ C.

5. In this problem, we will prove the following “almost industrial strength” generalization
of Proposition 4.2.5(a): let f : Rm → (−∞,+∞] be a proper convex function and let
A be an m × n matrix. Define g(x) = f(Ax), which is also a convex function. Then
∂g(x) ⊇ A>∂f(Ax) for all x ∈ Rn. Suppose further that ri dom f ∩ imA 6= ∅, that
is, there exists some point in z ∈ ri dom f that may be expressed as z = Ax for some
x ∈ Rn. Then, for any x ∈ Rn, we have ∂g(x) = A>∂f(Ax).

(a) Show (without assuming ri dom f ∩ imA 6= ∅) that ∂g(x) ⊇ A>∂f(Ax).

(b) Define U = {(x, z) ∈ Rn × Rm | z = Ax}, which is a linear subspace of Rn×Rm,
along with the following functions Rn × Rm → (−∞,+∞]:

F1(x, z) = f(z)

F2(x, z) = δU(x, z) =

{
0, z = Ax
+∞, z 6= Ax

F (x, z) = F1(x, z) + F2(x, z) =

{
f(z), z = Ax
+∞, z 6= Ax

Show that these functions are convex and that d ∈ ∂g(x) implies (d, 0) ∈ ∂F (x,Ax).

(c) Find expressions for ∂F1(x, z) and ∂F2(x, z).

(d) For the remainder of this problem, assume ri dom f ∩ imA 6= ∅. Show that
ri domF1 and ri domF2 must intersect.

(e) Find an expression for ∂F (x, z) = ∂(F1 + F2)(x, z). (Hint: you may use the
Moreau-Rockafellar theorem proved in class.)

(f) Combine the above results to show that ∂g(x) = A>∂f(Ax).

2


