Special Topics in Operations Research 16:711:611

Convex Analysis and Optimization

Spring 2009 Rutgers University Prof. Eckstein

Homework 4

1. Consider a proper convex function $f: \mathbb{R}^{n} \rightarrow(\infty,+\infty]$, and its subgradient mapping ∂f from \mathbb{R}^{n} to subsets of \mathbb{R}^{n} (sometimes denoted $2^{\mathbb{R}^{n}}$). That is,

$$
\partial f: x \in \mathbb{R}^{n} \mapsto\left\{d \in \mathbb{R}^{n} \mid f(y) \geq f(x)+\langle d, y-x\rangle \forall y \in \mathbb{R}^{n}\right\}
$$

Show that the point-to-set mapping ∂f has the following property:

$$
\left.\begin{array}{c}
y \in \partial f(x) \\
y^{\prime} \in \partial f\left(x^{\prime}\right)
\end{array}\right\} \quad \Rightarrow \quad\left\langle x-x^{\prime}, y-y^{\prime}\right\rangle \geq 0
$$

Note: point-to-set mappings with this property are called monotone.
2. (a) For a nonempty convex set C, define the point-to-set map

$$
N_{C}(x)= \begin{cases}\left\{d \in \mathbb{R}^{n} \mid\langle d, y-x\rangle \leq 0 \forall y \in C\right\}, & \text { if } x \in C \\ \emptyset, & \text { if } x \notin C\end{cases}
$$

Show that $N_{C}=\partial \delta_{C}$, where δ_{C} is the indicator function defined in homework assignment 2 , that is,

$$
\delta_{C}(x)= \begin{cases}0, & \text { if } x \in C \\ +\infty, & \text { if } x \notin C\end{cases}
$$

(b) Suppose that $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$ is a convex function, $x \in \mathbb{R}^{n}, w \in \partial f(x)$, and $d \in N_{\operatorname{dom} f}(x)$, where the $N_{(\cdot)}$ operation is as defined in part (a). Show that we also have $w+d \in \partial f(x)$.
(c) Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$ be a proper convex function, and let $x \in \mathbb{R}^{n}$ be a point such that $\partial f(x) \neq \emptyset$. Show that $\partial f(x)$ is compact if and only if $x \in \operatorname{int} \operatorname{dom} f$. (Hint: for the "if" part, adapt the proof given in class for real-valued convex functions.)
(d) Show that if U is a linear subspace of \mathbb{R}^{n}, then $N_{U}(x)=U^{\perp}$ for all $x \in U$, where U^{\perp} denotes the subspace orthogonal to U (by definition, $N_{U}(x)=\emptyset$ if $x \notin U$).
3. Give an example of how, when ridom $f_{1} \cap \operatorname{ridom} f_{2}=\emptyset$, one may have

$$
\partial\left(f_{1}+f_{2}\right)(x) \nsupseteq \partial f_{1}(x)+\partial f_{2}(x)
$$

for two closed proper convex functions $f_{1}, f_{2}: \mathbb{R}^{n} \rightarrow(\infty,+\infty]$. That is, at some point $x \in \mathbb{R}^{n}$, there exist subgradients of $f_{1}+f_{2}$ that cannot be expressed as the sum of a subgradient of f_{1} at x and a subgradient of f_{2} and x.
4. Using the same definition of the $N_{(\cdot)}$ operation as in problem 2(a), prove the following generalization of Proposition 4.7.2 in the textbook: let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$ be a proper convex function, and $C \subseteq \mathbb{R}^{n}$ a nonempty convex set. If ridom $f \cap \operatorname{ri} C \neq \emptyset$, then a point $x^{*} \in C$ minimizes f over C if and only if

$$
0 \in \partial f\left(x^{*}\right)+N_{C}\left(x^{*}\right)
$$

and this condition is equivalent to the existence of some $d \in \partial f\left(x^{*}\right)$ such that

$$
\langle d, y-x\rangle \geq 0 \quad \forall y \in C
$$

5. In this problem, we will prove the following "almost industrial strength" generalization of Proposition 4.2.5(a): let $f: \mathbb{R}^{m} \rightarrow(-\infty,+\infty]$ be a proper convex function and let A be an $m \times n$ matrix. Define $g(x)=f(A x)$, which is also a convex function. Then $\partial g(x) \supseteq A^{\top} \partial f(A x)$ for all $x \in \mathbb{R}^{n}$. Suppose further that ridom $f \cap \operatorname{im} A \neq \emptyset$, that is, there exists some point in $z \in \operatorname{ridom} f$ that may be expressed as $z=A x$ for some $x \in \mathbb{R}^{n}$. Then, for any $x \in \mathbb{R}^{n}$, we have $\partial g(x)=A^{\top} \partial f(A x)$.
(a) Show (without assuming ri dom $f \cap \operatorname{im} A \neq \emptyset$) that $\partial g(x) \supseteq A^{\top} \partial f(A x)$.
(b) Define $U=\left\{(x, z) \in \mathbb{R}^{n} \times \mathbb{R}^{m} \mid z=A x\right\}$, which is a linear subspace of $\mathbb{R}^{n} \times \mathbb{R}^{m}$, along with the following functions $\mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow(-\infty,+\infty]$:

$$
\begin{aligned}
& F_{1}(x, z)=f(z) \\
& F_{2}(x, z)=\delta_{U}(x, z)= \begin{cases}0, & z=A x \\
+\infty, & z \neq A x\end{cases} \\
& F(x, z)=F_{1}(x, z)+F_{2}(x, z)= \begin{cases}f(z), & z=A x \\
+\infty, & z \neq A x\end{cases}
\end{aligned}
$$

Show that these functions are convex and that $d \in \partial g(x)$ implies $(d, 0) \in \partial F(x, A x)$.
(c) Find expressions for $\partial F_{1}(x, z)$ and $\partial F_{2}(x, z)$.
(d) For the remainder of this problem, assume ridom $f \cap \operatorname{im} A \neq \emptyset$. Show that ri dom F_{1} and ri dom F_{2} must intersect.
(e) Find an expression for $\partial F(x, z)=\partial\left(F_{1}+F_{2}\right)(x, z)$. (Hint: you may use the Moreau-Rockafellar theorem proved in class.)
(f) Combine the above results to show that $\partial g(x)=A^{\top} \partial f(A x)$.

