Special Topics in Operations Research 16:711:611
 Convex Analysis and Optimization
 Spring 2009 Rutgers University Prof. Eckstein

Homework 5

Due Wednesday, April 8

1. Consider an optimization problem of the form

$$
\begin{array}{ll}
\min & f(x) \\
\text { S.T. } & A x=b \\
& h_{j}(x) \leq 0 \quad j=1, \ldots, r \tag{1}\\
& x \in X,
\end{array}
$$

where

- $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$ is a convex function
- A is an $m \times n$ matrix and $b \in \mathbb{R}^{m}$
- For $j=1, \ldots, r, h_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a differentiable convex function
- X is a convex set.

Let a_{i} denote row i of $A, i=1, \ldots, m$, represented as a column vector. Suppose that there exists a point $\bar{x} \in \mathbb{R}^{n}$ with the following properties:

- $\bar{x} \in \operatorname{ridom} f$
- $A \bar{x}=b$
- For $j=1, \ldots, r, h_{j}(\bar{x})<0$
- $x \in \operatorname{ri} X$.

Show that for $x^{*} \in \mathbb{R}^{n}$ to be a solution of (1), it is necessary and sufficient that there exist $\lambda^{*} \in \mathbb{R}^{m}$ and $\mu^{*} \in \mathbb{R}^{r}$ such that

$$
\begin{array}{rlrl}
0 \in \partial f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} a_{i}+\sum_{j=1}^{r} \mu_{j}^{*} \nabla h_{j}\left(x^{*}\right)+N_{X}\left(x^{*}\right) & \sum_{j=1}^{r} \mu_{j}^{*} h_{j}(x)=0 \\
A x^{*}=b & h_{i}\left(x^{*}\right) \leq 0, \quad i=1, \ldots, r & \mu^{*} \geq 0
\end{array}
$$

You may use results proved in class.
2. (a) Let $K \subseteq \mathbb{R}^{m}$ be a convex cone. Show that for any $x \in K$,

$$
\begin{aligned}
N_{K}(x) & =\left\{y \in K^{*} \mid\langle x, y\rangle=0\right\} \\
T_{K}(x) & =\operatorname{cl}\{z-\alpha x \quad \mid z \in K, \alpha \geq 0\}
\end{aligned}
$$

(b) Suppose A is an $m \times n$ matrix and $b \in \mathbb{R}^{m}$, and let $Z=\left\{x \in \mathbb{R}^{n} \mid A x-b \in K\right\}$. Show that, for $x \in Z$,

$$
\begin{equation*}
N_{Z}(x)=\operatorname{cl}\left\{A^{\top} \lambda \mid \lambda \in K^{*},\langle A x-b, \lambda\rangle=0\right\} . \tag{2}
\end{equation*}
$$

For the remainder of this problem, assume that the "cl" operation may be dropped from (2); for an example of a condition guaranteeing this may done, see Proposition 1.5.8 on page 65 of the Bertsekas text.
(c) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function, and consider the problem

$$
\begin{array}{ll}
\min & f(x) \tag{3}\\
\text { S.T. } & A x-b \in K
\end{array}
$$

Show that if $x^{*} \in \mathbb{R}^{n}$ is a local minimum for (3), there must exist $\lambda^{*} \in \mathbb{R}^{m}$ such that

$$
\nabla f\left(x^{*}\right)+A^{\top} \lambda^{*}=0 \quad \lambda^{*} \in K^{*} \quad\left\langle A x^{*}-b, \lambda^{*}\right\rangle=0
$$

3. For each of the following choices of $f: \mathbb{R} \rightarrow(-\infty,+\infty]$, compute the convex conjugate function \widehat{f} :
(a) $f(x)=\frac{1}{2} x^{2}$
(b) For $a, b \in \mathbb{R}, a<b$, setting $f=\delta_{[a, b]}$, that is, $f(x)=0$ whenever $a \leq x \leq b$, and otherwise $f(x)=+\infty$
(c) $f(x)=e^{x}$ (the standard exponential function).
