
Special Topics in Operations Research 16:711:611

Convex Analysis and Optimization

Spring 2009 Rutgers University Prof. Eckstein

Homework 7

Due Wednesday, April 29

1. Lagrangian Relaxation. One common use of Lagrangian relaxation/subgradient algo-
rithms is in combinatorial optimization. Suppose we have the problem

min c>x
S.T. Ax = b

x ∈ X,

where X is a large but finite set of points (hence nonconvex) over which one can easily
optimize a linear function. However, with the addition of the constraints Ax = b, the
optimization task becomes difficult. The Lagrangian relaxation approach attempts to
reduce the harder task to a sequence of easier ones via the recursions

xk+1 ∈ Arg minx∈X
{
c>x+ 〈λk, Ax− b〉

}
(1)

λk+1 = λk + αk(Ax
k+1 − b), (2)

where αk = τkγk is a subgradient method stepsize. Note that the step (1) reduces to
just minimizing the linear objective given by c+A>λ over X, which is assumed to be
“easy”.

A classic case of this form is the Held-Karp algorithm for the traveling salesman prob-
lem, where X is taken to be the set of all “1-tree” (trees in a graph, plus one additional
edge), and the constraints Ax = b express that every node should have degree 2.

Suppose we apply use the standard duality-generating function

F (x, u) =

{
c>x, if x ∈ X, Ax− b+ u = 0
+∞, otherwise,

even though X is not convex. Show that the optimal value of the dual function F ∗(0, λ)
one can obtain in this case is at most the value z∗ of the linear programming problem

min c>x
S.T. Ax = b

x ∈ convX,
(3)

and thus that minx∈X{c>x+〈λk, Ax− b〉} cannot exceed z∗. Hint: show that cl convF
is equal to the standard duality-generating function of problem (3) above.
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2. Refer back to problem 2 of the previous homework, where we use the duality-generating
function

F (x, u) = f(x) + g(Ax+ u)

on the problem minx∈Rn f(x) + g(Ax). Show that the subgradient method for the cor-
responding dual problem minλ∈Rm{−F ∗(0, λ)} can be implemented via the recursions

xk+1 ∈ Arg minx∈Rn{f(x) + 〈A>λk, x〉}
yk+1 ∈ Arg miny∈Rm{g(y)− 〈λk, y〉}
λk+1 = λk + αk(Ax

k+1 − yk+1),

where αk = τkγk as above.
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