Conceptual Algorithmic Template for Deterministic Dynamic Programming

Suppose we have T stages and S states. We set up two-dimensional arrays f and x such that:

- $f[t, i]$ holds the value of being in state i and time stage t (should be able to accept values of t up to $T + 1$)
- $x[t, i]$ holds the best decision to take in state i and time stage t

The optimization procedure may then be organized along the following general lines:

1. Set up or read in problem data
2. Set up two-dimensional arrays for x and f
3. For each possible state i, set $f[T + 1, i]$ to be the value of being in state i at the end of planning horizon. Depending on the problem and i, this value might be:
 - Zero (which means we don’t need any code if we initialized the f array to zeroes)
 - Infinity for disallowed ending states ($+\infty$ for minimization, $-\infty$ for maximization)
 - Some “salvage” value (for example, what you could get by selling off excess inventory to a discounter at the end of the time horizon)
4. Loop over stages $t = T, T - 1, \ldots, 1$ (backward!)
 - Loop over all possible states i
 - Set the current state value to be $+\infty$ for minimization, $-\infty$ for maximization
 - Determine which decision moves are possible from stage t, state i
 - Loop over all decisions d that are possible from this state
 - Evaluate the value of each decision d using the dynamic programing recursion formula. This typically means:
 - Find the next state j implied by the action d
 - Compute all profits/costs for the current stage
 - Value of the decision d is (current profits/costs) + $f[t + 1, j]$
 - If the decision d improves on the best seen, record its value and the decision d
 - Store the corresponding optimal value for stage t, state i in $f[t, i]$
 - Store the corresponding best decision in $x[t, i]$
5. When done, the optimal solution value is in $f[1, i_0]$, where i_0 is the initial state

To output the optimal sequence of decisions, start by setting i to the initial state, then trace forward through the optimal sequence of states as follows:

1. Loop over stages $t = 1, 2, \ldots, T$ (forward, this time)
 - Output the optimal decision $x[t, i]$
 - Overwrite i with the optimal state at time $t + 1$, computed from i and $x[t, i]$