Suppose we have T stages. We set up two-level data structures f and x such that

- $f[t][i]$ holds the expected value of being in state i and time stage t (should be able to accept values of t up to $T + 1$)
- $x[t][i]$ holds the best decision to take in state i and time stage t

The optimization procedure may then be organized along the following general lines:

1. Set up or read in problem data
2. Set up data structures for x and f
3. For each state i, set $f[T+1][i]$ to be the value of being in state i at the end of planning horizon. Depending on the problem and i, this value might be:
 - Zero
 - Infinity for disallowed ending states (+∞ for minimization, –∞ for maximization)
 - Some “salvage” value (for example, what you could get by selling off excess inventory to a discounter at the end of the time horizon)
4. Loop over stages $t = T, T-1, ..., 1$ (backward!)
 - Loop over all possible states i
 - Set the current state value v to $+\infty$ for minimization, $-\infty$ for maximization
 - Determine which decision moves z are possible from stage t, state i
 - Loop over all decisions z that are possible in this case
 - Initialize “move value” m of decision z to contains all costs/rewards for this situation that are not random
 - Determine which distinguishable random events e can occur in this situation
 - Loop over all possible random events e
 - Determine next state j
 - Add $P\{e\}(\text{costs/rewards depending on } e + f[t][j])$ to m
 - If the m improves on v, replace $v = m$ and store z as the “best move”
 - Store the “best move” decision for stage t, state s in $x[t][i]$
 - Store the corresponding optimal value v in $f[t][i]$
5. Output $f[1][i_0]$ as the optimal expected value, where i_0 is the initial state
6. Output $x[t][i_0]$ to indicate the initial decision you must take now
7. Loop over stages $t = 2, ..., T$
 - Loop over all possible states i
 - Output $x[t][i]$ to indicate what you would do if you find yourself in state i at stage t