Nonlinear Optimization
Spring 2013, Rutgers University
Prof. Eckstein

Homework 3: Unconstrained Optimization

1. **Linear convergence of gradient methods near “flat” local minima:** Consider the same function \(f : \mathbb{R} \to \mathbb{R} \) given by \(f(x) = x^4 \) from the second problem of the previous homework. Consider attempting to minimize \(f \) by a Newton method with Armijo line search with \(s = 1 \).

 (a) Show that the stepsize \(\alpha_k \) does not depend on \(x_k \), so long as \(x_k \neq 0 \) (that is, the stepsize is always the same unless the algorithm lands right on the global minimum). You do not have to calculate the exact value of \(\alpha_k \).

 (b) Show that from any starting point \(x_0 \neq 0 \), the algorithm converges linearly to 0 with rate no better than \(2/3 \). Why does this result not contradict the superlinear convergence theorem in the class notes?

2. **Modifying Newton methods to tolerate negative curvature.** In this problem, we will investigate ways of modifying Newton methods so they have more desirable global convergence properties in cases where they may encounter Hessians that are not positive definite. *Instructor’s note:* these modifications are simplified and not as computationally efficient or robust as “professional grade” approaches, but are similar in spirit.

 (a) Describe what happens when we apply the **newtonArmijo** algorithm on the class website to the function \(f_6(x_1, x_2) = \log(1+x_1^2+5x_2^2) \) (defined as \(f6 \) in *funcdefs.m*), from the starting point \((2,2) = [2;2]\)? Explain why.

 (b) Consider the following modification of Newton’s method: at each iteration, factor the Hessian \(H_k = \nabla^2 f(x_k) \) into \(H_k = QDQ^\top \), where \(D \) is a diagonal matrix containing the eigenvalues of \(H_k \), and \(Q \) is matrix whose columns are corresponding unit-length eigenvectors. Using some given parameter \(\nu > 0 \), construct a modified diagonal matrix \(\tilde{D} \) as follows: if \(d_{jj} \geq \nu \), then \(\tilde{d}_{jj} = d_{jj} \), but if \(d_{jj} < \nu \), then \(\tilde{d}_{jj} = 1 \). Then let \(\tilde{H} = Q\tilde{D}Q^\top \), and compute the search direction via \(d^k = -[\tilde{H}^{\top}]^{-1}\nabla f(x^k) \). Show that this procedure produces gradient-related search directions even if the \(H_k \) matrices encountered might not be positive definite.

 (c) Another alternative is as follows: if \(|\lambda| < \nu \) for any eigenvalue \(\lambda \) of \(H_k \), use \(-\nabla f(x^k) \) as the search direction. Otherwise calculate the Newton search direction \(d_n = -[H_k]^{-1}\nabla f(x^k) \), and check whether \(\langle \nabla f(x^k), d_n \rangle \leq -\nu \| \nabla f(x^k) \|^2 \). If so, set \(d^k = d_n \), and otherwise set \(d^k = -\nabla f(x^k) \). Show that this method will also produce a gradient-related sequence, even when the \(H_k \) matrices encountered might not be positive definite.
(d) Implement each of the above methods in MATLAB in a similar style to the code distributed on the class website. Turn in a listing of the .m-file for each method. Also hand in printouts of the sequence of points generated by each method for the example of part (a) with the same starting point $[2; 2]$. Use $\nu = 0.001$ in both cases, and the Armijo stepsize rule with parameters $s = 1$, $\sigma = 0.25$, and $\beta = 0.5$. Notes: the MATLAB statement $[Q, D] = \text{eig}(H)$ will compute the factors of the matrix H in the manner described in part (b). Similarly, the statement $\lambda = \text{eig}(H)$ will place a one-dimensional array of H’s eigenvalues into λ. \hfill \square