Nonlinear Optimization
Fall 2019, Rutgers University
Prof. Eckstein

Homework 6: Duality and Related Topics

1. **Duality for quadratic programming.** Assuming that Q is symmetric, solve problem 4.1 on page 203 of the Ruszczyński book. Show that the dual problem can also be expressed as having a quadratic objective and linear constraints.

2. **Fenchel duality from Lagrangian duality** Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ and $g : \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ be closed proper convex functions, and M be any $m \times n$ matrix. Define a “Lagrangian” function L on $\mathbb{R}^n \times \mathbb{R}^m$ by

$$L(x, \lambda) = f(x) + \lambda^\top Mx - g^*(\lambda).$$

Set $X_0 = \mathbb{R}^n$ and $\Lambda_0 = \mathbb{R}^m$.

(a) Show that the corresponding primal function L_P is given by

$$L_P(x) = f(x) + g(Mx).$$

Thus, the primal problem corresponding to L is to minimize $f(x) + g(Mx)$.

(b) Show that the corresponding dual function L_D is given by

$$L_D = -f^*(-M^\top \lambda) - g^*(\lambda).$$

Thus, the dual problem from L is to maximize $L_D = -f^*(-M^\top \lambda) - g^*(\lambda)$.

3. **A simple exercise in conjugate functions.** Let V be a linear subspace of \mathbb{R}^n and consider the convex function

$$\delta_V(x) = \begin{cases} 0, & \text{if } x \in V \\ +\infty, & \text{if } x \notin V. \end{cases}$$

Show that

$$\delta_V^*(y) = \begin{cases} 0, & \text{if } y \in V^\perp \\ +\infty, & \text{if } y \notin V^\perp, \end{cases}$$

where V^\perp denotes the orthogonal complement of V.

4. **A simple symmetric form of duality.** Suppose f is a closed proper convex function $\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ and V is a nonempty linear subspace of \mathbb{R}^n. Consider the problem

$$\min_{x \in V} f(x).$$

By setting $n = m$, $M = I$, and $g = \delta_V$ in problem 2 and also using problem 3, show that a dual problem to (1) may be written as

$$\max_{\lambda \in V^\perp} -f^*(\lambda) \quad \text{or equivalently} \quad \min_{\lambda \in V^\perp} f^*(\lambda).$$

(2)